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A finite element technique is presented for the plastic analysis of 
structures subjected to out-of-plane bending alone, or In combination 
with In-plane membrane stresses. The method makes use of a linear 
matrix equation of finite element analysis, formulated to include the 
effect of initial strains. This equation is applied to the plasticity 
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nonlinearity being introduced through subsidiary stress-strain re- 
lations from an Incremental plasticity theory. In addition, the analysis 
is combined with an incremental technique developed to account for 
the effects of geometric nonlinear behavior. Thus, the present analysis 
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rectangular plates for which material nonlinearity alone is present. 
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SECTION I 

INTRODUCTION 

The description of plastic behavior presents some basic difficulties to the structural 

analyst. These difficulties are associated with a proper description of the material phenomenon 

and the nonlinear nature of the resulting governing equation. Thus, the mathematical formu- 

lation of the plasticity problem makes an analysis of all but the simplest structures a very 

formidable, if not an impossible, task. Consequently, considerable attention has been given 

recently to the extension of finite element techniques to include the effects of plastic behavior 

(References 1-5). These techniques have the advantage of being capable of treating the effects 

of plasticity in complex structures by utilizing various algorithms for linearizing the basic 

nonlinear nature of the problem. 

Most of the current effort concerned with the application of finite element techniques to 

the plasticity problem has been limited to the treatment of structures in states of membrane 

stress. In addition, the methods generally neglect the effects of geometric nonlinearity. These 

limitations are too restrictive for many important aerospace structures. Consequently, it is 

the purpose of the present paper to extend the methods already developed to provide for a 

plastic bending analysis that accounts for membrane stress states and geometric non- 

linearity. 

The present method makes use of a governing linear matrix equation that relates the 

applied loading to the nodal displacement and initial strains. For the purpose of a plas- 

ticity analysis, the plastic strains are interpreted as initial strains. Use of the initial strain 

concept, to treat the effects of plasticity, requires the development of appropriate matrix 

relations based on assumptions for the distribution of both displacements and initial (plastic) 

strain within a finite element. The specification of a distribution for plastic strain within a 

finite element forms the basis on which the present plasticity analysis depends. 

Inclusion of the effects of geometric nonlinearity is primarily of concern in problems 

involving thin beams, plates, and shells in the plastic, as well as elastic, range. A finite 

element method that utilizes an incremental procedure requiring a successive modification 

of the element stiffness properties has been discussed in Reference 6. This method requires 

the introduction of an additional stiffness matrix to account for the effects on the bending 
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stiffness of the membrane stresses generated as a consequence of geometric nonlinearity. 

In addition, the effect that changes in geometry have on subsequent deformations is taken into 

account. This incremental procedure is incorporated Into the plastic bending analysis to 

treat the combined effects of material and geometric nonlinearity. 

SECTION II 

MATERIAL NONLINEARITY-PLASTIC BENDING ANALYSIS 

An Important advantage of finite element techniques is the ability to specify the distri- 

bution of displacement and strain states within each finite element. This permits assumptions 

to be made for the distribution of plastic strain and the development of regions of plasticity 

within an element. These assumptions considerably reduce the complexity of the analysis by 

defining the distribution of plastic strain in any element, one the nodal values are deter- 

mined. This feature is consistent with finite element analysis, and allows us to be concerned 

only with quantities at node points of the Idealized structures. 

For the case of membrane stress states, the plastic strains are assumed to vary in a 

prescribed manner in the plane of the element. For out-of-plane bending, an assumption must 

be made for the distribution of plastic strain through the thickness as well as in the middle 

surface of the element. Specifically, the present analysis assumes the plastic strains to vary 

linearly along the edges of a finite element between adjacent nodes, and in addition assumes 

a linear variation of plastic strains from the upper or lower surface of the element to an 

elastic-plastic boundary (or boundaries) located within the cross section of the element. 

These assumptions require the determination of the position of an elastic-plastic boundary 

based on its assumed distribution within the element during the course of loading. Thus, the 

present analysis utilizes the concept of a finite element in which there is a progressive 

development of a plastic region instead of the layered approach of Reference 7 or the sandwich 

idealization of Reference 8. 

The above assumptions are made in the development of the governing linear matrix 

relation, which has been formulated to Include the effects of initial strains. These assumptions, 

as applied to a typical beam finite element for which pure bending behavior has been assumed, 
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are shown in Figure 1. The function for the displacement in the z-direction is assumed to be 

of cubic order in the coordinate x, and is written in terms of the generalized nodal dis- 
placements as 

to 

In choosing a displacement function, it is important to include all fundamental strained states 

and all rigid body terms. Equation 1 satisfies these requirements for a beam element, and 

allows for a constant shear load and linearly varying moment along the length of the element. 

The plastic strain distribution is assumed to vary linearly in the x-direction from its value 

at the upper (or lower) surface at node 1, represented in Figure 1 as *Qi, to its value at the 

upper (or lower) surface at node j, represented as €      This assumed distribution is written 
as 

•te0M-*KM] (2) 

where z represents the depth of the elastic-plastic boundary. In addition, as seen from 

Equation 2, it is assumed that at a node, the plastic strain varies linearly from its value at 

the upper or lower surface to zero at an elastic-plastic boundary located through the cross 
section. 

The depth of the elastic-plastic boundary, which propagates from the upper and lower 

surface, is measured from the neutral axis for pure bending, as shown in Figure 1. In general, 

the depth of this boundary cannot be directly related to the load. Hence, the value of z must 

be determined from the total strain distribution, which is assumed to vary linearly through 

the thickness in accordance with Kirchoff »s hypothesis. The functional form representing 

the distribution of the elastic-plastic boundary is assumed to be a linear function of the 
coordinate x and may be written as 

(V?.)(t)+T. (3) 

where z.{ and Zj represent the depth of the elastic-plastic boundary at nodes i and J, re- 

spectively. Thus, with the preceding assumptions, the elastic-plastic boundary consists of 

a surface in the interior of the element that extends over the entire area of the element and 

intersects the edges along straight lines joining nodes, as illustrated in Figure 1. In addition. 
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these assumptions eliminate the necessity of determining an elastic-plastic boundary on the 

faces of the element between nodes, but still require locating such a boundary through the 

thickness. 

The present assumptions are further extended to include the effects of bending in com- 

bination with a membrane stress state. As seen in Figure 2, this extension necessitates the 

determination of the position of the elastic-plastic boundary relative to both the upper and/or 

lower surface. The functional representation of the plastic strain distribution and the 

representation of the elastic-plastic boundary are taken similar to Equations 2 and 3 written 

for both the upper and lower surface. A second matrix, in addition to the usual stiffness 

matrix, termed the initial stress stiffness matrix (to be discussed in the next section), is 

also implemented to account for the effects of the membrane load on the bending stiffness. 

This problem also requires the introduction of a second displacement component, u, acting 

in the axial direction, 

um = ('-x)ui+(i )uj (4> 

It should be noted that although the functional form of the plastic strain distribution, as 

shown in Figure 2, does assume the existence of a neutral axis located within the cross section 

of the beam element, the present analysis is capable of considering plastic sections in which 

the neutral axis is not located within the thickness of the beam; that is, the upper and lower 

strains are of the same sign. This situation occurs with the application, or generation, of 

large membrane stresses as compared to the existing bending stresses. The treatment of 

this situation is accomplished by modifying the functional form of the plastic strain distri- 

bution given in Figure 2. 

The present method has also been extended to treat the more complex problem of the 

plastic bending of a plate. A typical rectangular plate element is shown in Figure 3. The 

displacement function chosen is the one originally used by Bogner, Fox, and Schmit (Ref- 

erence 9), and is in terms of products of first order Hermitian polynomials. The components 

of initial strain are assumed to vary as products of zero order Hermitian polynomials in the 

plane of the element and linearly through the cross section from their values at the upper 

(or lower) surface to zero at the elastic-plastic boundary. The depth of the boundary through 
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the thickness, which must be determined at each of the four nodes of the rectangular element, 

Is computed from the total strains by means of the following relation: 

- toyeHd       ,  . - . o 
zij  =      / '•' • ''2 

V     (J2mox)li 

where 

(*-)« "77^  (•I-'tf^I'J^k)' 

i\-v)2 (.1-1)' 
lj 

and the superscript T denotes total strains. The function defining the elastic-plastic boundary 

in the plane of the element is assumed to be in the form of products of zero order Hermitian 

polynomials as shown in Figure 3. The foregoing assumptions associated with the plastic 

strain distribution and the representation of the elastic-plastic boundary ensure compatibility 

of these quantities along element boundaries. 

METHOD OF ANALYSIS 

Once the assumption is made on the distribution of displacement, the total strain distri- 

bution oan be expressed in terms of nodal displacements by making use of the appropriate 

strain displacement relations in conjunction with the assumed displacement function. This 

relation can be written in matrix form as follows: 

tT = W <i (5) 
0 

where   • T     Is the vector of total strains 

d        Is the vector of generalized nodal displacements. 

The assumed distribution of plastic strains can be written in terms of their nodal 

quantities as 

-   = WP    ^0 (6, 

where   e_   is the vector of nodal plastic strains. 
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The matrices W  and   W   are, in general, functional matrices which depend explicitly on 
IT 

the assumptions made for the distribution of displacement and initial strain, respectively, 

within the element. Specifically, the assumptions discussed above for the beam and plate 

elements are used in the formation of w and w in the present analysis. The element stiffness 

properties in the presence of initial strains are developed on the basis of these two func- 

tional matrices. They are obtained by substituting Equations 5 and 6 into the expression for 

strain energy and then employing Castigliano's first theorem. To this end, the expression 

for  strain energy which explicitly contains  the effect of Initial strains may be written as 

u = i III,T' E ,T dV~ ///*T' E € dV (7) 
V v 

where the elements of the matrix E are the coefficients associated with the appropriate 

linear stress strain relations. Substitution of Equation 5 and the assumed plastic strain 

distribution of Equation 6 into Equation 7 leads to 

U=2   V   k  V'O   k%0 ,8) 

where 

;//*• E W dV o) 

k* = ///WE  W    dV 
(10) 

VP 

The matrix k represents the element elastic stiffness matrix and depends only on the 

assumption made for element displacements. The second integral, Equation 10, represents 

the initial strain stiffness matrix which is dependent on the assumptions for both total and 

plastic strains. The quantity V in Equation 10 is the volume of the plastic region in each 

element as determined by the representation of the elastic-plastic boundary. Consequently, 

the elements of the initial strain stiffness matrix k * will be a function of, among other 

quantities, the depth of the elastic-plastic boundary at each node,and must therefore be 

continuously computed during the course of loading. The initial strain matrix for the beam 

element subjected to pure bending and that for combined bending and axial load are given in the 

Appendix. Due to space limitations the initial strain matrix associated with the rectangular 

plate bending element is omitted here. It may be found In Reference 14. 
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Application of Castigliano's theorem to Equation 7 yields the governing linear matrix 

equation for an individual finite element 

= P   =Hn-k\rt (ID 
ddQ     " ro 0 "0 

where PQ   la the vector of generalized nodal forces. 

A similar equation is also developed in incremental form in anticipation of combining 

plasticity with the incremental geometric nonlinear analysis. This equation is written as 

follows: 

APQ =k AdQ - k  AcQ (,2, 

It should be emphasized that the initial strain matrix associated with the increment of 

plastic strain A «• Q in Equation 12 is written as k to distinguish it from the inital strain 

matrix k * associated with the total plastic strain €_ . These matrices may differ sub- 

stantially, since the functional form assumed for the distribution of total plastic strain will 

not, in general, coincide with the assumed distribution associated with the increment of 

plastic strain. In the present analysis, e^ was assumed to vary linearly through the thickness 

from the upper and/or lower surface to the elastic-plastic boundary. This assumption implies 

a bilinear distribution of A«Q . The specification of a distribution of this form requires the 

determination of a value of the plastic strain increment at some intermediate point in the 

cross section, in addition to a value at the upper and/or lower surface. 

To avoid the added complexities associated with the use of Equation 12, we may alter- 

natively use an incremental form of Equation 11 as follows: 

Apo = k Ado ' A< (,3) 

where 

Aq   = A   [k      €Q  J  =   k     €n «, 0 0 

and the superscripts i and i-1 refer to the current and preceding loading step, respectively. 

In Equation 13, the product of the initial strain matrix and the total plastic strain is con- 

sidered as a vector of fictitious loads. The increment of this fictitious load, represented as 

A« . is determined at any step by subtracting its current value from that computed in the 
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preceding step. In this manner, only total values of plastic strain are utilized in the governing 

linear matrix equation. The desired form of the equation is obtained by grouping the in- 

crements of generalized nodal forces and fictitious forces, resulting in the following equation: 

k  Ad '   = AP' + Aq1"1 (14) 

Here, it is seen that the values of the increment of fictitious load introduced into Equation 14 

are values taken to be equal to those computed in the preceding load increment. The use of 

this type of predictor procedure is necessary because the depth of the elastic-plastic boundary 

(and the current value of plastic strain) at those nodes of the structure in the plastic range 

can be determined, in general, only from the stress (or strain) distribution computed at the 

end of the load step. The position of the elastic-plastic boundary is determined at the end of 

each load increment, and is assumed to remain fixed during the next increment. 

Equation 14 is written for each element in the structural idealization and then appropri- 

ately assembled to form the overall linear matrix equation for the entire structure. This 

equation, not shown here, is identical in form to Equation 14. The incremental solution tech- 

nique using this equation reduces to a sequence of linear problems in which the applied loading 

is constantly modified by the fictitious force vector. 

PLASTICITY RELATIONS 

The foregoing matrix equations must be used in conjunction with an appropriate plasticity 

theory. Plasticity is introduced into Equation 14 through subsidiary stress-strain relations 

provided by this theory. In the present paper, consideration is given to both elastic, strain- 

hardening or ideally plastic material behavior. For both types of behavior, the total strain 

increment at a node can be written as the sum of an elastic and plastic component, represented 

as At-   and A«Q , respectively, in the following equation: 

AtA   = At*     +    A«„ (15) 0 0 0 

In addition, the increment of elastic strain is related to the stress increment, A <r , by means 

of Hooke's Law. Thus, Equation 15 can be written as 

At     = E      Ao-   + A« (16) 
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For an elastic, strain-hardening material, we make use of a linear incremental relation 

between plastic strain and stress increment 

A« = C   A<r (17) 

This relationship is represented in a general form by the matrix c in Equation 17. The 

formulation of this matrix is directly related to the plasticity theory chosen for use, i.e., 

these elements may be determined by using an isotropic hardening theory or the kinematic 

hardening theory of plasticity. The elements of this array for plane stress, obtained by 

using Drucker's postulate with the Prager-Ziegler kinematic hardening theory, are explicitly 

given in Reference 1. 

Substituting Equation 17 into Equation 16 leads to an incremental stress-strain relation 

given in the Equation 18 

Aer = B"1    AtT (18) 

where 

R s E~' + C 

It should be noted that there is no unique stress increment for a given plastic strain incre- 

ment vector. Therefore, the matrix C , given in Reference 1, is singular. However, the 

matrix R , defined in Equation 18, will possess an inverse, thereby providing the necessary 

coefficients relating the stress increment to the increment of total strain. 

T The increment in total strain at anode, A e  , is obtained from the increment of displace- 

ment by using Equation 5 in incremental form as follows: 

A#S = wo  Ado 09) 

where W_   is defined at a node. It should be noted from Equations 19 and 5 that the functional 
T form chosen to represent the increment of total strain, A • , is identical to that used in the 

T representation of its  full  value,  eQ.   Thus, having obtained the Increment of displacement 

from the solution of the total linear matrix equation in the form of Equation 14, Equations 15 

through 19 represent the necessary relations that must be used to obtain the complete 

solution for increments of stress and strain, assuming elastic strain-hardening material 

behavior. After summing all incremental quantities, a new value of the increment of ficti- 

tious load, A q , is determined for each element in the plastic range and the procedure is 

repeated until the desired maximum value of the load is reached. 
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Consideration of elastic, ideally plastic material behavior is necessary for predicting 

the collapse load of a given structure and loading situation. The two conditions to be satisfied 

for multiaxial elastic, ideally plastic material behavior are: 

1) the stress increment vector must remain tangent to the loading surface, and 

2) the plastic strain increment vector must remain normal to the loading surface, 

where the loading function is the representation, in stress space, of the initial yield function, 

or the subsequent yield function after some plastic deformation has occurred. 

The above conditions are expressed analytically   for the case of plane stress and using the 

von Mises yield condition by the following two equations: 

(<rx " T CTy ,d°-K + <°-y " I <Vdtry + 3Txy dTxy = ° (20) 

d« d« dy xy 

^x "TV to"y- TV 
= dX 

3T 
(21) 

xy 

where d X is a positive scalar quantity. 

If we consider the differential of the stress components as incremental quantities, the 

implicity differential of Equation 20 provides a linear relation among the components of 

stress increment, represented in matrix form as follows: 

A<r  = F   Ao- <22) 

Expressing ACT    in terms ofAo-    and Ar    , yields the elements of the matrix   E as x y xy 

0 -M, ~M2 
0 1 0 

0 0 1 

where 

M (a    -±o;|/lor   -2-  V 

M2 =   3rxy /(crx   - -g  o-y ) 
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If we  replace de..  by Ac.., Equation 17 provides a linear relation between components of 

plastic strain increment, written as 

A«  = E  Ac 

Then expressing Ac   and Ay*\ in terms of Ac   gives the elements of the matrix E . 
y *y * 

(23) 

I 0 

0 

0 

0 

0 

0 

It is apparent from Equations 20 and 21 that only two of the three components of stress in- 

crement and only one of the three components of plastic strain increment are required to 

obtain the remaining components. Thus, only three of the six quantities are independent 

variables.   The  increments  of stress  and plastic  strain can now be written in terms of a 

vector, Aw , representing these independent quantities, arbitrarily chosen as Ac , ACT  , x       y 
and AT xy' 

A«, 

Aw = < Ao- 

AT, 

(24) 

xy 

Equations 22  and 23  may now be  rewritten to relate the Increments of stress and plastic 

strain in terms of Aw 

ACT  = E   Aw (25) 

and 

A«  = E"   Aw (26) 

A   relation  between the vector Acu    and the increment of total strain is obtained by sub- 

stituting Equations 25 and 26 into Equation 16. 

A*     • E     Aw (27) 
where 

* -I   — ~ 
E    s E       E     +   E 

Once again, as in the case of strain hardening behavior, increments of displacement and total 

strain are obtained from the linear matrix equations. The solution for A<o from Equation 27 

and its substitution into Equations 25 and 26 represent the procedure necessary to obtain the 

complete solution for displacements, stresses, and strains for any increment, assuming 

elastic, ideally plastic material behavior. 

1314 



AFFDL-TR-68-150 

SECTION in 

MATERIAL AND GEOMETRIC NONLINEARITY 

For the preceding theory and applications, it was assumed that the strain-displacement 

relations were linear although the stress-strain law was not. The implementation of a 

nonlinear stress-strain relation for the characterization of material behavior merely de- 

pends on the absolute magnitudes of the elongations and shears existing in a body. When 

they exceed a certain value, nonlinear material characteristics become important and must 

be included to gain an insight into the response of the structure to further loading. Although 

the magnitudes of the shears and elongations may be sufficiently large to necessitate the 

inclusion of plastic effects, their values and the value of the angles of rotation may still be 

small compared to unity. If this condition, and the additional condition that the squares and 

products of angles of rotation may be neglected as compared to the elongations and shears 

remain valid, then the use of linear strain-displacement relations is justified. Thus, material 

nonlinearity can exist independently of geometric nonlinearity. 

For flexible bodies (beams, plates, shells), the second condition (that on the squares and 

products of rotation) is not satisfied in many instances. Under these circumstances it is 

unjustifiable to neglect the terms containing the squares and products of the rotations in the 

strain-displacement relations. Furthermore, the linear equilibrium equations are no longer 

valid and nonlinear terms consistent with the inclusion of rotations in the strain-displacement 

relations should be retained. Thus, stresses that multiply rotations should not automatically 

be dropped in deference to those that appear linearly in the equilibrium equations. 

Geometric nonlinearity can exist independently of physical nonlinearity since small shears 

and elongations do not imply small angles of rotation. Problems requiring the consideration 

of geometric nonlinearity alone include the question of stability of elastic equilibrium, the 

deformation of bodies having initial stresses, large deflection of beams, plates and shells, 

and torsion and bending in the presence of axial forces. For these situations, the effect of 

geometric nonlinearity must be taken into account not only in the strain displacement relations, 

but in determining changes in the length of line elements, and in formulating the conditions 

of equilibrium of the volume element. In addition, if the magnitudes of the strains become too 

large, it then becomes necessary to include material nonlinearity through the stress-strain 

relations. 
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In the following, the procedure developed for material nonlinearity is expanded to include 

geometric nonlinearity. Although only elastic perfectly-plastic results are given, the method 

is equally applicable and easily adaptable to strain-hardening behavior using the procedure 

outlined in the previous section. Representative structures chosen to illustrate the signif- 

icant features of combined geometric and material nonlinearity are the restrained beam and 

the circular arch. 

Martin (Reference 6) has presented an incremental numerical method, based on the 

direct stiffness approach, which is generally applicable for the treatment of problems in- 

volving geometric nonlinearity. This procedure approximates the nonlinear behavior by a 

sequence of linear steps. Either loading or displacement may be applied incrementally. This 

procedure also requires the introduction of an initial stress stiffness matrix, in addition 

to the conventional stiffness matrix, to account for the effects on the bending stiffness of 

the membrane loads generated as a consequence of geometric nonlinearity; that is, the effects 

of rotations on strains. Thus, the implementation of this matrix in addition to the initial 

strain matrix represents the required modifications for the development of an incremental 

procedure to account for both types of nonlinearity. 

A general development of the matrices discussed above and the method of solution to the 

problem of combined nonlinearity is obtained by following the procedure as outlined in Ref- 

erence 6 with modifications associated with the inclusion of plasticity. The total elastic strain 

may be written as the sum of three components; i.e., 

•' = t° + AtT - A« 

A.e 

(28) 

where   e° is the initial elastic strain vector (equal to P./AE for the beam column, and re- 

lated to the initial stresses a- , or  , T     for the two dimensional plate problem). The vector ,j, x     y     xy 
Ae is the additional total strain developed within the increment of load. This strain in- 

crement is related to the Increments of displacement through the strain-displacement relations 

which must now include the nonlinear rotation terms. For a beam column element, this re- 

lationship is given by 

A   T       dlAu) I   /dlAwA2 d2(Aw) \L3 
(29) 
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where Au and Aw represent the increments In the axial and lateral displacements of the 

middle surface of the beam. The usual Bernoulli-Euler kinematic beam theory assumptions 

were made to obtain Equation 29. The first term in the above equation represents the ex- 

tension of the centerline of the beam, the second term is the contribution to the extensional 

strain due to lateral deflection (the rotation term), and the last term is the conventional 

bending strain term arising from the condition that normals to the neutral axis should 

remain after deformation straight and normal to the centerline and unextended. The corre- 

sponding strain-displacement relations for a plate are 

T   _ aiAui 
'x dx 

/dlAwA2 _ 
V ax   ; 

a tAw) 
dx2 

Ae aiAv) 
dy 

i /aiAwif a2 (Aw) 
ay2 

(30) 

A7 *y 

atAu)     atAv)  { a (Aw) at Aw> _ 2^ a (Aw) 
dy dx 5x dy dxdy 

The functional form for the increments in displacement for the beam column Is chosen 

to be identical to that given in Equations 1 and 4 for the total displacement; that is, 

Aw(x) 
2 

I 
1*1 

Aulx)    =    I     H^'uiAuj 
i = I 

HQ!' (X)AW.   + H, .    (x)Aw,x 

(0) 
(3D 

where the definitions of the Hermitian polynomials may be obtained by comparing corre- 

sponding terms in Equations 1, 4, and 31. A representation identical to that given in Ref- 

erence 9 may be used for the increment of lateral displacement for the plate element. The 

incremental relationship between total strain and generalized nodal displacements is obtained 

by taking appropriate derivatives of the assumed displacement functions. 

The increment in elastic strain energy from an initial elastic strain state, • , may be 

written as 
..°4A.' 

AU , /// 

V 
/. <r-  dt* dV (32) 
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Integrating the above equation between the prescribed limits of strain and using the following 

relations: 

<r   - E    .e 

<r° = E    .° 

and 

Ate = AtT- At, 

we can write the increment of strain energy as 

Au = \ ///At   E At   dv - /// At    E   At dv + 
v v 

ffftr0' AtT dv + \ ///At' E  At dv - ///<r0' At dV 

(33) 

T Only those terms in the above equation that contain   A a   , which is a function of the increment 

of nodal displacement, will contribute to the incremental load-deflection-initial strain 

relationship. The remaining terms are arbitrary constants. Upon neglecting higher order 

terms in the increments of displacement, the first term in Equation 33 leads to the con- 

ventional stiffness matrix. The second term yields the initial strain matrix, while the third 

term leads to the initial stress stiffness matrix. In the development of the latter matrix the 

work done by the in-plane stresses and the generation of additional membrane stresses, 

resulting from the effects of geometric nonlinearity, are both taken to be zero during the 

application of an increment of lateral load. These considerations constitute the linearization 

of the procedure during an increment of load. 

Consistent with the incremental procedure of the previous section, the increment of 

plastic strain may be written as 

A«j =  «' -«'-' 

Substituting the above equation into Equation 33 and then making use of Castigliano's theorem 

leads to the following relation for an individual element: 

APJ =k
,0) AdJ  +k"'AdJ 

(34) 

I 1-1 

0 0 k* «J - k* .«-« 
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where 

(0) 
k      = fjf W EWdV, 

V 

the conventional stiffness matrix, 

kH,=/// W' a0   W   dV, 

V 

the initial stress stiffness matrix, and 

k*   =  ///*' E WP dV • 
VP 

the  initial  strain stiffness  matrix.  The  matrix W relates the increment of rotation to the 

increment of generalized nodal displacement and therefore represents the nonlinear con- 

tribution to the strain-displacement relations. The matrices W and W   are the same as those 

used in the previous section. 

A predictor-procedure must once again be used to obtain a solution because the location 

of the elastic-plastic boundary is not known a priori. Thus, the governing linear matrix 

equation is written in the following form: 

( JO)       .til \    .     |       .     i .   ,_| 
[k      + k      j Ad ' = Ap'   + A«' (35) 

where Aq is defined in Equation 13, and must once again be retarded by one step in the 

solution procedure. Equation 35 is very nearly the same as Equation 13 used in Section II 

for the plastic bending analysis. However, because of the presence of geometric nonllnearity, 

the entire element stiffness matrix k = k * + k' ' must be reformed at every step using 

current stress levels and geometry. 

Thus the solution procedure requires that for a generic step, k' ' and k ' are calculated 

by making use of the geometry and initial forces existing at the start of the step. The in- 

crement in the fictitious force, Aq , is calculated using current and the immediately preceding 

values of the location of the elastic-plastic boundary. An increment of load is then applied, 

and the corresponding displacement increments calculated from the total matrix equation 

obtained by assembling Equation 35 for each element. New internal forces are calculated 
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and total stresses, strains, and displacements are obtained by summing incremental values. 

The new location of the elastic-plastic boundary is determined from the total strain (or stress) 

distribution and the process is repeated until the maximum specified load level is reached or 

the structure fails. 

SECTION IV 

RESULTS 

As a demonstration of the feasibility of the plastic bending analysis, application of the 

method has been made to some elementary, but representative sample structures. For two of 

these structures (a simply supported and a canti levered beam), results from an exact solution 

to the governing differential equation, assuming elastic-Ideally plastic material behavior, are 

available for comparison. As a consequence of assuming elastic-ideally plastic behavior, 

and since both of the structures are statically determinate, an analytic expression can be 

written which relates the depth of the elastic-plastic boundary to the applied load. The finite 

element analysis is initially applied to the beam structures using this relationship, thus pro- 

viding a means of determining the validity of assumptions made in choosing such quantities as 

the displacement function, the plastic strain distribution, and the representation of the 

elastic-plastic boundary. 

Figure 4a represents a nondimenslonalized load versus central deflection curve for a 

uniformly loaded, simply supported beam. Six elements are used in the idealization of one- 

half of the beam. In this figure, wQ is the center deflection, w * is the center deflection at 

the maximum load for which the beam is entirely elastic, and P represents the nondimensional 

load parameter, given as 
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Here, p is the applied load, and p. = 4b <r . ... The results obtained from the finite element 

analysis compare quite favorably with corresponding results from the exact solution (Ref- 

erence 10), as shown in Figure 4a. The collapse load, as determined from the near vertical 

slope of the load-deflection curve, is approximately three percent higher than the exact 

collapse load which occurs at a value of P= 1. 

The progression of the elastic-plastic boundary through the thickness and in the plane of 

the element is shown in Figure 4b. From this figure it is seen that, although the depth of the 

boundary at plastic nodes is exact, the assumption associated with its distribution in the plane 

(i.e., linearly varying to adjacent nodes), may lead to discontinuities in the representation of its 

slope as evidenced in the figure for load values of p- 1.00 and P = 1.03. The appearance of 

these discontinuities indicates that the actual boundary lies between the nodes on the upper and 

lower surface of the beam. The error introduced by the assumption of a linearly varying 

boundary in the plane can be reduced by increasing the number of elements used in the 

idealization of the beam. Also to be noted in Figure 4b is the development of a fully plastic 

cross section located at the center of the beam at a load of P = 1. In a continuum analysis, 

the development of this fully plastic cross section is sufficient to cause collapse of this 

structure. However, in the finite element analysis, collapse does not occur until both cross 

sections of the element containing the center of the beam become fully plastic. 

Results in the form of a nondimensionalized load versus tip-deflection curve for a uni- 

formly loaded, cantilevered beam, are shown in Figure 5a. Elastic-ideally plastic material 

behavior was assumed. A comparison with results from an exact solution, shown as the solid 

curve in the figure, indicates good correlation up to the collapse load. For this problem, as 

for the simply supported beam, the depth of the elastic-plastic boundary can be directly 

related to the applied load. This relationship was used, once again, to obtain the results shown 

in the figure. 

The progression of the elastic-plastic boundary, through the cross section and In the plane 

of the elements, is shown in Figure 5b. As indicated in the figure, the development of the 

boundary is much more localized for this structure than it was for the simply supported beam. 

Consistent with a continuum approach, collapse of this structure was indicated in the finite 

element analysis by the development of one fully plastic cross section at the root of the 

cantilever. 
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Pmp" (Y)     Nondlm«nilonal Load 

Figure 4a.   Load Versus Deflection of a Simply Supported Beam 

Figure 4b.   Progression of Elastic-Plastic Boundary: Simply Supported Beam 
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Figure 5b.   Progression of Elastic-Plastic Boundary Cantilever Beam 
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For both the simply supported beam and the cantilevered beam, as previously mentioned, 

an exact relationship between the depth of the elastic-plastic boundary at nodes in the plastic 

range and the applied load was used to obtain results using the finite element analysis. The 

Justification for using this relationship, which admittedly does not exist for most structures 

of interest, was to check the validity of assumptions made in choosing such quantities as the 

displacement function, the plastic strain distribution, and the representation of the elastic- 

plastic boundary. As indicated by the previous results, the use of these assumptions for the 

finite element analysis appears to be justified. 

Since, in general, the depth of the elastic-plastic boundary is not known at the current 

load step, results for the cantilevered beam were recomputed and a load-deflection curve 

obtained, by using an approximate value for the depth of the elastic-plastic boundary which is 

shown in Figure 6. The value of the depth of the boundary used for any increment of load is 

based on the total strain distribution determined at the end of the previous load increment. 

The use of this procedure cannot lead to the development of a fully plastic cross section. 

Consequently, it is assumed that a fully plastic cross section exists at a node when plasticity 

has developed a specified amount through the thickness. The deflections and the slope of the 

load-deflection curve for this structure, increase quite rapidly beyond a value of load for 

which plasticity has developed through 80 percent of the end cross section. Thus, in the analysis 

this value was chosen as the criterion to determine the development of a fully plastic cross 

section. The degree of approximation obtained by using previous values of the depth of the 

boundary, when compared with the exact solution, is illustrated in Figure 6. As can be seen, 

the results compare favorably for most of the load range considered. The maximum diver- 

gence occurs in the vicinity of the collapse load, determined by using the exact boundary 

position. The error introduced by using the approximate position, for the prediction of the 

collapse load, is seven percent. 

Results are also shown in Figure 6 for the cantilevered beam, for which strain hardening 

material behavior is assumed. These results, shown as the dotted curve, are compared with 

the corresponding results obtained by using elastic-Ideally plastic behavior. The proximity 

of results for strain hardening and perfectly plastic behavior can be attributed to the use of 

Ramberg-Osgood strain hardening parameters, chosen to approximate the elastic-ldeally 

plastic stress -strain curve. The slope of the load-deflection curve for strain hardening 

behavior illustrates that the beam still possesses some stiffness beyond the theoretical 

collapse load predicted by assuming perfectly plastic behavior. 
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Figure 7 illustrates the application of the procedure to a simply supported beam sub- 

jected to combined bending and axial loads. Aspreviously discussed in Section III, the analysis 

for this problem requires the introduction of an initial stress stiffness matrix to account for 

the effects of the membrane load on the bending stiffness. The determination of the position of 

the elastic-plastic boundary relative to both the upper and lower surfaces Is also required 

for this analysis. Results have been obtained for cases in which a uniform lateral load acts 

in conjunction with a constant tensile or compresslve axial load, indicated in the figure by 

T = +1000 and T • -1000, respectively. These results are compared with the case of pure 

bending, indicated as T • 0. As seen in the Figure 7, the effect of the axial compresslve load 

is to reduce the stiffness of the structure, and the tensile load increases the stiffness, when 

compared to the case of pure bending. A solution to this problem by using a continuum 

analysis similar to the one developed for pure bending in the plastic range does not appear 

to be available for comparison. For the case of the compresslve axial load, the lateral load 

was Incremented to a value that resulted In the failure of the structure. This failure is indi- 

cated in Figure 7 by the near vertical slope of the load-deflection curve. It should be noted 

that, for this problem, It was not necessary to develop a completely plastic cross section for 

collapse to occur. The reduction of the stiffness, caused by the axial compresslve load and 

the progression of the elastic-plastic boundary through only a portion of the thickness, was 
sufficient to cause failure. This type of failure is associated with plastic buckling rather than 

the formation of a mechanism. 

Application of this procedure has been made to a simply supported, uniformly loaded, 

square plate. Using a 36-element idealization to represent the quarter panel, load versus 

central deflection curves for this structure, assuming elastic-ldeally plastic and elastic- 

strain hardening material behavior, are shown in Figure 8. Once again, as in the case of the 

beam, the proximity of results for both types of material behavior Is attributable to the choice 

of strain hardening parameters that approximate elastic-ideally plastic material behavior. 

The collapse load for this structure, determined by assuming elastic-ideally plastic 

material behavior, is the value of the load at which the pattern of fully plastic elements forms 

a mechanism of failure. The pattern of the development of the plastic region in the plane of 

the plate, and the progression of the boundary through the thickness of the plate, Is shown in 

Figures 9a and 9b, respectively. In Figure 9a the cross-hatched area represents those 

regions of the plate in which plasticity has developed to some degree less than 80 percent 

through the cross section. The shaded area represents those regions in which plasticity has 

developed to a depth greater than 80 percent through the thickness. A consideration of the 

latter   region  as  being fully plastic  leads  to  the development of a mechanism of collapse 
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Figure 6.   Load Versus Tip Deflection of Cantilever Beam 

Figure 7.  Simply Supported Beam Subjected to Combined Bending and Axial Loads 
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Figure 8.  Load Versus Central Deflection of a Uniformly Loaded Simply Supported 
Square Plate 
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formed along the diagonals of the square plate, as shown in Figure 9a. As in the case of the 

beam, this criterion is necessary because the depth of the boundary, as computed from the 

total strains, cannot lead to the development of a fully plastic section. 

The pattern of development of the plastic region in the plane of a narrow rectangular 

plate ( f) • 0.3) and the progression of the boundary through the thickness across the length 

and width of the plate, is shown in Figures 10a through 10c, respectively. In Figure 10a the 

80 percent criterion was once again used to determine the pattern of fully plastic sections 

in forming the collapse mechanism. From this figure it is evident that the sections along the 

collapse pattern do not all lie on the diagonals of the plate. 

A comparison of upper bound solutions for the load carrying capacities of rectangular 

plates of various aspect ratios is shown in Figure 11. The solid curve represents the solution 

obtained using the von Mises yield criterion in conjunction with assumed collapse pattern (1), 

shown in Figure 11. The dotted curve, obtained from Reference 12, represents the upper 

bound solution obtained using the Tresca yield condition, together with assumed collapse 

pattern (2). Results from the finite element analysis are represented by the solid circles. 

The finite element results indicate that the displacement pattern (2) is a more accurate 

representation of the collapse mechanism than is pattern (1). An upper bound solution using 

the second displacement pattern with the von Mises yield condition is shown as the dashed 

curve in Figure 11. The results from the present analysis compare favorably with this latter 

solution and are slightly below it except for extremely low aspect ratios. For such narrow 

plates, the use of the 80 percent criterion in conjunction with the depth of the elastic-plastic 

boundary, calculated from the total strain distribution of the previous step, is not adequate. 

A relaxation of the 80 percent criterion, based on a careful examination of the load deflection 

history, appears to be warranted. In addition, a possible alternative might be the incorporation 

of an iterative procedure in the method of solution. 

To illustrate the procedure associated with geometric nonlinearity and combined material 

and geometric nonlinearity, a simply supported, restrained beam, subjected to a uniform 

vertical load, is considered. Load versus central deflection curves, obtained for purely 

elastic and for elastic-ideally plastic material behavior are shown in Figure 12a. Results 

assuming elastic behavior from the finite element analysis and exact results from Ref- 

erence 13 are shown as the dotted curve in the figure. Load versus deflection curves, as- 

suming plastic behavior are presented for idealizations Involving 6, 12, and 24 elements for 

one-half of the beam. Differences in the results for these idealizations only appear after the 
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end sections at the supports become fully plastic. Deflections beyond the value of load at 

which this occurs increase quite rapidly, and collapse occurs shortly thereafter with the 

development of another fully plastic cross section. The counterbalancing effect of geometric 

and material nonlinearlty is vividly depicted in Figure 12a by the region of the load-deflection 

curve which is very nearly linear. 

Figure 12b illustrates the growth of the plastic regions of the restrained beam. The 

dotted line at P = 179 lb/in. Indicates the jump In the representation of the plastic region, 

when the end section becomes fully plastic. 

The load-deflection history of a circular arch subjected to a concentrated load is shown 

in Figure 13. The elastic buckling load compares favorably with that obtained in Reference 5. 

Load versus center deflection curves, obtained by assuming elastic-ideally plastic material 

behavior, are shown for two values of yield stress. The onset of collapse for this structure is 

appreciably hastened with the introduction of plasticity. This is attributable to the reduction 

of the stiffness of the structure resulting from the complementary effects of geometric and 

physical nonlinearlty. As in the case of the uniformly loaded beam subjected to a constant 

axial compressive load, the development of a fully plastic cross section was not necessary 

for collapse to occur. 

Figure 14 illustrates the load-deflection histories of the same arch as that used in 

Figure 13, now subjected to a uniform load distribution. Once again it is seen that the effect 

of plasticity considerably reduces the collapse load of the structure from Its elastic buckling 

load. 
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SECTION V 

SUMMARY AND CONCLUSIONS 

A finite element method is presented that can account for material nonlinearity, alone, 

or in combination with geometrically nonlinear behavior for the out-of-plane bending analysis 

of structures. The initial strain concept is implemented into the finite element analysis, 

formulated within the framework of the direct stiffness method, to account for the effects of 

plasticity. These effects are introduced into the analysis as a fictitious load vector to be 

combined with the actual applied load. Thus, the method of analysis can be readily incor- 

porated into existing finite element procedures. 

Application of the method, illustrating the plastic behavior of typical structures under 

pure bending, and bending in combination with applied axial loads, is presented. Results 

from the finite element analysis are compared with results from analytical solutions, 

where possible, for beam and plate structures. Good correlation is indicated for the load- 

deflection characteristics of these structures as well as for the prediction of plastic collapse 

loads. In addition, with the generation, or application of compressive membrane stresses, 

the present procedure is capable of predicting failure resulting from a combination of plastic 

collapse and buckling. The correlation of results and the numerical stability of the procedure 

as applied to the sample problems substantiates the assumptions associated with the func- 

tional representation of the elastic-plastic boundary and the distribution of the plastic strain 

within each element, in addition to the use of the predictor form of the solution procedure. 

Since the phenomenon of plastic deformations may itself lead to large displacements 

and rotations, the treatment of effects arising from geometric nonlinearity assumes partic- 

ular significance in the solution of many important problems. Consequently, the plastic 

bending analysis was combined with a method capable of accounting for geometrically non- 

linear behavior. This combined procedure was applied to a restrained beam and a simply 

supported circular arch. In the beam, the effects of geometric nonlinearity act counter to 

the reduction of stiffness caused by the progressive development of plasticity. Failure of this 

structure occurs only after the development of fully plastic cross sections. For the circular 

arch, the effects of both types of nonlinearity are complementary, and failure occurs as a 

plastic buckling phenomenon. 
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APPENDIX 

INITIAL STRAIN STIFFNESS MATRICES 
FOR BEAM FINITE ELEMENTS 

The initial strain stiffness matrices for abeam element in pure bending and for combined 

bending and membrane loading, are derived on the basis of the assumptions shown in Figures 1 
and 2, and are given in Integral form in Equation 10. 

The matrix equation defining the fictitious nodal restoring forces in terms of the re- 

sulting initial strain stiffness matrix, is shown below for the pure bending of a beam with a 
rectangular cross section, represented as 

c, // c„ ft 
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and P   and M represent the fictitious restoring force in the lateral direction and moments, z 
respectively.   For this element, all "z's are determined with respect to the median surface. 

Other quantities appearing in Equation 36 are defined in Figure 1. 

The corresponding relations for the case of combined bending and membrane stresses 

are shown below: 
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(37) 

'II 

* 
(|2 

•ii 

* 
<2. 

[I   /40)c,   + U/4)c3 

(9Jl3/40)c,   -  (l2/4)c2 - (f/4»c3 

(Jt  /40)c    + (i/4)c. 

(9i'/40)c4 - (i2/4)c5-(i/4)c6 

(X4/I20)c,   4 U3/24)c2 +(/2/4)c3 

22 

* 
l23 

* 
'24 

* 
l3l 

(£4/20)c.   - (/3/24)c. 

(Jt4/I20)c     + (£3/24)c   -+ li2/4)c 
4 5 6 

(14/20)C.   -   <*3/24)c 
4 5 

(Z3/ 8) c7   -   l3/2/8)c8 

1337 



AFFDL-TR-68-150 

and 

k*    =   -  U3/ 4)c ,   -  <3/2/8)c_ 

k *    =       (A3/ 8)e      + (3Z2/8)e 33 9 tO 

k*      =        (|3/4)C_      +   (3/2/8)e 34 9 10 

k*     =  - t£4/30)c      -  (/3/24)c 
51 I 2 

k*2   =   -   (724/40)c,   -   (5/3/24)c2 -(Jt2/4)c3 

k*3    =   -   (X4/30)c4  -   U3/24)c5 

k*     =   -   (7X4/40)c    -  (5X3/24)c    - (t2/4)c 
5* 4 5 6 

cl •e?- i») /*• 

c 
2 = -(J" " **)(••- «V) '* 

C3 ~i» (..-!») 

CA ~(V -^,.« 

V •(n- n)(--- it)/i 

C. =    2t2   +   tzj" - i1" 
• i i 
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C8   = 7U 

i 

C9   = (n- • *, 

CI0   = 
iL - 2t 

/£> 

The terms, P     and P   , represent the fictitious restoring forces in the axial direction. 
xi X] 

Here all z's are measured with respect to the upper surface of the beam. All other quantities 

appearing in Equation 37 are defined in Figure 2. 

1339 


